Radargrams. check it

Collage of radargramsBasically, radargrams are colour images into which the reflected signals are converted using preprocessing routine for enhancing the image readability. Various filters are used then to point out specific structures in subsurface.

The colours do not indicate specific materials or objects. Shapes of the reflection, a contrast and colour intensity are important for interpretation. For more information, please check out the article How to understand radargrams.



GPR Roteg cart towed by ATV on the fieldIn archaeological scenarios, GPR usually measures shallow depths up to 5 m. Because of this, using transmitters with a pulse amplitude up to 1,000 times greater than the conventional GPRs may seem unnecessary for use in archaeology or similar surface surveys. The problem, however, occurs in arid loess soils or in damp clays in the lowlands, near waterbodies and in highly mineralized or salty soils. In such conditions, common GPRs are only able to reach depth of tens of centimetres at a frequency of 500 MHz. Higher transmitting power allows us to select a higher frequency and thus gives us a more detailed resolution.

Measurement examples:


GPR Roteg in a caveGPR can verify position and depth of caves and their course. Limestone, the rock in which the caves are located, has a low attenuation of wave, so GPR can reach greater depths. Measurement can be provided from the surface or inside the caves in all directions: on the floor, walls, ceiling, caves chimneys and shafts. Barometric pressure sensor is very useful for depth measuring there. When searching for unknown cavities, and the antennas are towed by ATV or behind a car, it is possible to measure even several tens of kilometers of profile per day.

Speleologists appreciate the work with Roteg because it enables to trace the course even of small anomalies quickly, cheaply and with sufficient accuracy compared to other geophysical methods.

Measurement examples:

Water areas

GPR cart in a boatGPR measurements are also possible to provide on the surface of the water (or on ice), antennas can be placed in a boat that does not have a metal bottom or they can be manually dragged from the shore by ropes.

It is not possible to use the wheel, so the automatic time measurement is used for distance measuring and GPS provides information about the trajectory. Radargram shows not only the bottom but also the structure of the bedrock underneath. It is possible to measure the pool siltification (sediments accumulated on the bottom of stagnant water) for example.

Measurement examples: